Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1089812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817136

RESUMO

Fibroblasts activation is a crucial process for development of fibrosis during idiopathic pulmonary fibrosis pathogenesis, and transforming growth factor (TGF)-ß1 plays a key regulatory role in fibroblast activation. It has been reported that metformin (MET) alleviated bleomycin (BLM)-induced pulmonary fibrosis (PF) by regulating TGF-ß1-induced fibroblasts activation, but the underlying mechanisms still deserve further investigations. In this study, MET blocked α-smooth muscle actin (α-SMA) accumulation in vivo accompanied with S100A4 expression and STAT3 phosphorylation inhibition, resulting in attenuating the progression of lung fibrosis after BLM administration. We determined that S100A4 plays critical roles in fibroblasts activation in vitro, evidenced by siRNA knockdown of S100A4 expression downregulated TGF-ß1 induced α-SMA production in Human fetal lung fibroblast (HFL1) cells. Importantly, we found for the first time that the expression of S100A4 in fibroblasts was regulated by STAT3. Stattic, an effective small molecule inhibitor of STAT3 phosphorylation, reduced S100A4 level in TGF-ß1- treated HFL1 cells accompanied with less α-SMA production. We further found that MET, which inhibits STAT3 phosphorylation by AMPK activation, also inhibits fibroblasts activation by targeting S100A4 in vitro. Together all these results, we conclude that S100A4 contributes to TGF-ß1- induced pro-fibrogenic function in fibroblasts activation, and MET was able to protect against TGF-ß1-induced fibroblasts activation and BLM-induced PF by down-regulating S100A4 expression through AMPK-STAT3 axis. These results provide a useful clue for a clinical strategy to prevent PF.

2.
Acta Pharmacol Sin ; 44(5): 1029-1037, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36333557

RESUMO

Pulmonary fibrosis (PF) is a chronic interstitial lung disease with no effective therapies. Galectin-3 (Gal-3), a marker of oxidative stress, plays a key role in the pathogenesis of PF. Fibroblast-myofibroblast differentiation (FMD) is an important source of fibrotic cells in PF. Previous studies showed that melatonin (MT) exerted anti-fibrotic effect in many diseases including PF through its antioxidant activity. In the present study we investigated the relationships among Gal-3, NRF2, ROS in FMD and their regulation by MT. We established an in vitro model of FMD in TGF-ß1-treated human fetal lung fibroblast1 (HFL1) cells and a PF mouse model via bleomycin (BLM) intratracheal instillation. We found that Gal-3 expression was significantly increased both in vitro and in vivo. Knockdown of Gal-3 in HFL1 cells markedly attenuated TGF-ß1-induced FMD process and ROS accumulation. In TGF-ß1-treated HFL1 cells, pretreatment with NRF2-specific inhibitor ML385 (5 µM) significantly increased the levels of Gal-3, α-SMA and ROS, suggesting that the expression of Gal-3 was regulated by NRF2. Treatment with NRF2-activator MT (250 µM) blocked α-SMA and ROS accumulation accompanied by reduced Gal-3 expression. In BLM-induced PF model, administration of MT (5 mg·kg-1·d-1, ip for 14 or 28 days) significantly attenuated the progression of lung fibrosis through up-regulating NRF2 and down-regulating Gal-3 expression in lung tissues. These results suggest that Gal-3 regulates TGF-ß1-induced pro-fibrogenic responses and ROS production in FMD, and MT activates NRF2 to block FMD process by down-regulating Gal-3 expression. This study provides a useful clue for a clinical strategy to prevent PF. Graphic abstract of the mechanisms. MT attenuated BLM-induced PF via activating NRF2 and inhibiting Gal-3 expression.


Assuntos
Melatonina , Fibrose Pulmonar , Animais , Humanos , Camundongos , Bleomicina/efeitos adversos , Fibroblastos , Galectina 3/efeitos dos fármacos , Galectina 3/metabolismo , Pulmão/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
J Inflamm Res ; 14: 6543-6556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34898994

RESUMO

Progranulin (PGRN), a secretory glycoprotein consisting of 593 amino acid residues, is a key actor and regulator of multiple system functions such as innate immune response and inflammation, as well as tissue regeneration. Recently, there is emerging evidence that PGRN is protective in the development of a variety of immune-mediated diseases, including rheumatoid arthritis (RA), inflammatory bowel disease (IBD), type 1 diabetes mellitus (T1DM) and multiple sclerosis (MS) by regulating signaling pathways known to be critical for immunology, particularly the tumor necrosis factor alpha/TNF receptor (TNF-α/TNFR) signaling pathway. Whereas, the role of PGRN in psoriasis, systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) is controversial. This review summarizes the immunological functions of PGRN and its role in the pathogenesis of several immune-mediated diseases, in order to provide new ideas for developing therapeutic strategies for these diseases.

4.
Pharmacol Res ; 173: 105844, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450310

RESUMO

Pulmonary fibrosis (PF) is a progressive and devastating lung disease of unknown etiology, excessive fibroblast proliferation serves as a key event to promote PF. Transcription factor forkhead box M1 (FOXM1) is not only a well-known proto-oncogene, but also an essential driver of cell proliferation. Recently, 5'-AMP-activated protein kinase (AMPK) is reported to reduce the incidence of PF. However, it remains elusive whether have an underlying relationship between AMPK and FOXM1 in fibroblast proliferation-mediated PF. Here, the progression of lung fibroblast proliferation and the expression levels of AMPK and FOXM1 were observed by intratracheally instilled of bleomycin (BLM) and intraperitoneal injection of metformin in C57BL/6 J mice. Meanwhile, human fetal lung fibroblast1 (HFL1) cells were respectively treated with AMPK activator metformin or AMPK inhibitor Compound C, or FOXM1 depletion by transfected small interfering RNA (siRNA) to unveil roles of AMPK, FOXM1 and the link between them on platelet-derived growth factor (PDGF)-induced fibroblast proliferation. Our results demonstrated that AMPK activated by metformin could down-regulate FOXM1 and alleviate BLM-induced mouse PF model. In vitro, activation of AMPK attenuated PDGF-induced fibroblast proliferation accompanied by the down-regulation of FOXM1. In contrast, inhibition of AMPK enhanced PDGF-induced fibroblast proliferation along with activating FOXM1. These findings suggest that AMPK can ameliorate the progression of fibroblast proliferation during PF via suppressing the expression of FOXM1 and provide new insight into seek PF treatment approaches.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Forkhead Box M1/metabolismo , Metformina/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia
5.
J Cell Physiol ; 236(11): 7734-7744, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34061990

RESUMO

Fibroblast-myofibroblast differentiation (FMD) is a critical cellular phenotype during the occurrence and deterioration of pulmonary fibrosis (PF). FMD can increase with an elevated level of reactive oxygen species (ROS) on fibroblasts under oxidative stress. Thioredoxin-interacting protein (TXNIP) is an α-arrestin family protein that regulates the level of intracellular ROS. Nuclear factor erythroid 2-related factor 2 (Nrf2) can protect against FMD in PF. However, the relationship between Nrf2 and TXNIP in FMD remains elusive. Therefore, we established TGF-ß1-induced FMD in vitro and bleomycin (BLM)-induced mouse PF model in vivo to explore whether the activation of Nrf2 can inhibit TXNIP-mediated FMD in PF. Dimethyl itaconate (DMI) was selected to activate Nrf2. Our results showed that TXNIP was elevated and FMD was aggravated in mice lung tissues after BLM administration compared with the saline group. Inversely, Nrf2 decreased TXNIP expression and alleviated FMD in PF. In vitro, TXNIP overexpression enhanced FMD and increased the level of ROS. In contrast, TXNIP deficiency by small interfering RNA (siRNA) attenuated TGF-ß1-induced FMD and reduced ROS. An increase in ROS by H2 O2 can upregulate TXNIP expression. Moreover, Nrf2 also inhibited TGF-ß1-induced FMD and the increase of ROS, with reducing expression of TXNIP, and the inhibitory effect was better than TXNIP siRNA. These results suggest that activation of Nrf2 by DMI can protect against PF via inhibiting TXNIP expression. Our study may provide new therapeutic targets and treatment approaches for PF.


Assuntos
Antifibróticos/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Succinatos/farmacologia , Tiorredoxinas/antagonistas & inibidores , Animais , Bleomicina , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...